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We study various properties of the surface of diffusion-limited aggregation (DLA) and invasion
percolation clusters using a “glove algorithm.” Specifically, we define the £-perimeter to be the set of
nonfractal sites with a chemical distance ¢ from a fractal with M sites. We argue that P(M,¢), the
number of sites of the {-perimeter, should obey a scaling law of the form P(M,£)/{ ~ f(£/M/%s),
where f(u) ~ u~% for v — 0 and f(u) — const for u — oco. Simulations of two-dimensional
off-lattice DLA clusters, invasion percolation clusters, and percolation hulls—as well as an exact
treatment of the Sierpinski gasket—support this scaling form. We find that an analogous scaling
form holds for G(M, £), the number of sites in the “f-glove,” which is composed of the sites of the
{-perimeter accessible to particles of radius £ from the exterior. Moreover, we define a hierarchy of
“lagoons” for the case of loopless fractals as regions that are inaccessible to particles of different
sizes. We apply this definition to DLA and find that the lagoon-size distribution in DLA is consistent
with a self-similar structure of the aggregate. However, we find even for large lagoons a surprisingly
small most probable width of the necks that separate the lagoons from the exterior of the cluster.
Small neck widths of large lagoons are consistent with a recently proposed void-neck model for the
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geometric structure of DLA.

PACS number(s): 05.40.+j, 61.50.Cj, 64.60.Ak, 81.10.Jt

I. INTRODUCTION

Unlike the points of a compact object, a large fraction
of the sites of a fractal are “exposed” to points that do
not belong to the fractal itself. In other words, a fractal
is almost entirely composed of “surface” [1]. This ob-
servation explains why fractals are of great importance
in a wide range of disciplines. In biology, matter ex-
change takes place across membranes and often requires
large contact areas of the participating systems: oxygen
diffuses into the blood in lung tissue and trees absorb nu-
trients through their widely branched root network. In
chemistry, reaction rates depend on the surfaces that the
reacting species expose to one another. The surface of
a catalyst plays a central role in catalytically controlled
reactions. The use of porous media as electrodes for bat-
teries [2,3] is also important for applications.

In particular, the present study addresses surface prop-
erties of diffusion-limited aggregation (DLA) [3-9], inva-
sion percolation (IP) [10,11], and percolation hull (PH)
[12] clusters. In the DLA model a seed particle is placed
in the center of a coordinate system and a random walk
is released from “infinity.” On contact, the walker sticks
to the growing aggregate, whereupon a new particle is
released. This procedure is repeated until an aggregate
of the desired size is formed. As the cluster grows, its in-
terior is increasingly screened from the exterior, because
incoming particles are more likely to stick to the tips
of the aggregate. A complex, branched, random fractal
is formed, which displays rich scaling properties [13-17]
that are still not fully understood [18]. To improve the
simple structural models of DLA [19-21], a better un-
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derstanding of the geometry of DLA is required. In par-
ticular, the importance of “almost closed loops” in the
structure of the aggregate is debated in conjunction with
highly screened sites [22-25] in parts of the cluster [26].
Since DLA grows by addition of particles approaching
from infinity, only the “exterior” (accessible) cluster sur-
face supports growth and its characterization merits at-
tention.

Similar to the DLA case, IP clusters also only grow on
their “external” surface [10]. As DLA, IP is also used as a
model for fluid displacement in a random medium. The
medium is modeled by a lattice occupied with random
numbers of uniform distribution. The invasion process
starts on a central seed site [10,11,27] and continues by
always replacing the smallest accessible random number
on the surface of the invasion front by a new IP clus-
ter site. If the invasion process forms a loop such that
“defender” fluid is trapped, no more invasion into the
trapped region takes place. Two-dimensional (2D) IP
clusters have been found to be fractals with dimension of
about df ~ 1.82 [10,11].

Motivated by these two examples, we develop an algo-
rithm — the “glove” algorithm — to measure the follow-
ing quantities, defined in Sec. II.

(i) The total perimeter of a fractal [cf. Fig. 1(a)], the
set of all nearest-neighbor sites of the fractal, and a gen-
eralization thereof ({-perimeter) to neighboring sites of
higher order. For DLA, IP, and PH we find scaling rela-
tions which also suggest a method for the determination
of the fractal dimension of an object.

(ii) The accessible perimeter of a fractal [cf. Fig.
1(a)], which is the set of the perimeter sites that can
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FIG. 1. This figure is designed to illustrate the definitions
used throughout the text for the various types of cluster and
perimeter sites. We denote the 39 cluster sites by square sym-
bols, the subset of 37 cluster sites that belong to the hull by
filled squares, and the remaining two internal cluster sites by
hatched squares. (a) The perimeter sites which are nearest
neighbors to cluster sites fall into three categories, (i) internal
perimeter sites, shown as open circles, (ii) external perimeter
sites that are accessible from the exterior only if one can walk
on second neighbors, shown as hatched circles, and (iii) the
remaining external perimeter sites, called accessible perime-
ter and shown as filled circles. (b) The 1l-perimeter of the
same object is the set of all nearest-neighbor sites, denoted
by the symbol . (c) The second step in the construction of
the {-perimeter. The 2-perimeter sites are nearest-neighbor
sites to the 1-perimeter and denoted by . (d) 1-glove (bold-
face ). Only 1-perimeter sites that are nearest neighbors to
vacant external sites constitute the 1-glove. (e¢) Empty acces-
sible nearest-neighbor sites of the 1-glove form the 2-glove.

be reached from the exterior of the object, and a gen-
eralization thereof ({-gloves) to neighbor sites of higher
order. The accessible perimeter has been studied experi-
mentally, e.g., for porous media and fresh fractures (3,28],
and theoretically for percolation clusters [29-32]. For the
{-gloves of DLA, IP, and PH we find scaling relations sim-
ilar to those describing the ¢-perimeter.

(iii) The “lagoon”-size distribution, where “lagoons”
are generalizations of the notion of voids to the case of
loopless fractals [Sec. IV A]. Lagoons are the regions of
a fractal which are inaccessible to probe particles with a
given size [33]. They are important in connected objects
like IP and DLA, where they are delineated by almost
closed loops in the geometrical structure.

Our study is organized as follows. First, we intro-
duce the glove algorithm and give precise definitions of
the quantities (i) and (ii) in Sec. II. Second, we pro-
pose scaling relations for the ¢-perimeter and the £-gloves
which we apply to the case of DLA (Secs. IIIB 2, IIIC 2).
We analytically calculate the scaling functions for the
Sierpiniski gasket (Appendix A) and obtain numerical
scaling forms for PH (Appendix B) and IP clusters (Ap-

pendix C). Third, we define “lagoons” and study their
distribution in DLA in detail (Sec. IV). Finally, we sum-
marize our results in Sec. V.

II. THE “GLOVE” ALGORITHM

In this section we present an operational definition of
the /-perimeter and the ¢/-glove. For the remainder of this
paper, we will assume — as is the case in many computer
simulations — that the object studied is specified as a set
of discrete points on a square lattice.

A. The £-perimeter

Suppose that we attach a label 0 to all the sites of the
investigated object [square-shaped sites in Figs. 1(a)-
1(f)]. Here, we follow the notation of Grossman and
Aharony [30] introduced for percolation, and use the term
“perimeter” to refer to sites that do not belong to the
object itself [circular sites in Figs. 1(a)-1(e)]. To define
the 1-perimeter, we find the nearest-neighbor sites of the
object and label them £ = 1, as shown in Fig. 1(b). Sim-
ilarly, the sites that are nearest neighbors of sites with
£ =1, and not already labeled in the previous step, are
identified as £ = 2 sites and form the 2-perimeter [Fig.
1(c)]. We iterate the procedure and thereby label all
sites surrounding the object [34]. The number £ asso-
ciated with every lattice site is also called the chemical
distance [35] of the site to the object. In general, we will
use the term “/-perimeter” to refer to the set of sites with
the same label ¢, and denote their number by P(M,¥¢).
Here M is the mass or the total number of lattice sites
occupied by the object.

B. The £-gloves

Next we describe the procedure to determine the “/-
gloves” of the object. In the first step, instead of labeling
all the neighbor sites of the object as done for the £-
perimeter, we place a flexible “glove,” one lattice unit
thick, on the object.

The 1-glove [boldface symbols @ in Fig. 1(d)] consists
of all nearest-neighbor sites of the object which are also
nearest neighbors to vacant lattice sites with ¢ = 2.

To determine the 2-glove, we iterate the process leading
to the 1-glove. To this end, we consider the union of the
injtial fractal and its 1-glove as the object to place the
2-glove on [Figs. 1(d,e)]. We iterate the covering process
to obtain ¢-gloves up to any desired order.

In Fig. 1(d) we display the 1-glove and in Fig. 1(e) the
2-glove for a small object. The £-glove is always a subset
of the £-perimeter and as the £-perimeter, the subsequent
gloves explore fewer and fewer details of the surface of the
object. For large £, greater than half the diameter of the
largest “lagoon” (see below), the ¢-perimeter and the £-

glove become identical. We denote the number of sites
in the /-glove as G(M, £).
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C. Related notions and possible generalizations

Before continuing, we remark on related mathemat-
ical work. There exist continuum quantities to which
{-perimeter and f-glove are closely related. For exam-
ple, a useful quantity, which can also be successfully em-
ployed to determine fractal dimensions, is the Minkowski
sausage. The Minkowski sausage, or r-neighborhood of
an object, is the set of all points x with distance < r to
the object (for mathematically oriented work introduc-
ing novel methods to determine the fractal dimension of
curves and profiles, see, e.g., [36,37]; for application of
the Minkowski sausage concept in physics and chemistry,
see, e.g., [38]).

If we replace the Euclidean distance in the continuum
by the chemical distance on the lattice and consider (r =
£)-neighborhoods of the fractal on the lattice, then these
{-neighborhoods can be regarded as the lattice versions
of the Minkowski sausages. The f{-neighborhood is the
union of ¢'-perimeters with ¢/ < /. Similarly, one can
construct the £-neighborhoods by “dilation” of the fractal
with a diamond-shaped “structure element” [39]. That is
one places a diamond-shaped object of “diameter” 2/ + 1
on all lattice sites occupied by the fractal and forms the
union of all sites covered by this structure element.

Apparently, the £ + 1 and the ¢-neighborhoods differ
by the sites occupied by the (£ + 1)-perimeter. We note
that only the ezternal sites of the (£ + 1)-perimeter con-
stitute the £ + 1-glove. For further illustration, we ana-
lytically calculate the Minkowski sausage and continuum
analogues of the f-perimeter and ¢-glove for the Sierpinski
gasket in Appendix A.

The numbers £ assigned to the sites of a square lattice
by the glove algorithm constitute a distance transform
of the set of lattice sites occupied by the fractal. A dis-
tance transform is an array of numbers representing the
shortest distances to occupied lattice sites in a particular
metric. In this context, the glove algorithm can be clas-
sified as the 4-neighbor distance transform [40]. More so-
phisticated transforms approximate Euclidean distances
more closely and have been used, e.g., in [36] to determine
Minkowski sausages. Although we have defined ¢-glove
and {-perimeter for two dimensions, these could be gener-
alized to higher dimensions, as done for the ¢-perimeter,
e.g., in [40].

III. SCALING LAWS FOR PERIMETERS
AND GLOVES

A. General remarks

Scaling arguments have successfully been applied in
physics to describe a host of phenomena in a variety of
fields, most notably critical phenomena. The shortest
route to scaling makes use of properties of generalized
homogeneous functions [41]. A generalized homogeneous
function f(z,y) of two variables z and y obeys the rela-
tion

f(X*z, \Py) = Af(z,y). (3.1)

Elementary considerations [41] show that (3.1) is equiv-
alent to writing

F(z,y) = y"/*F(z/y*/®,1) = y*/* f (z/y*/®).

Here f(u) is called the scaling function and u = z/y
the scaling variable. The functional form of the scaling
function f(z/y*/?) and the exponents a and b in this
relation are universal, i.e., they are not sensitive to model
“details,” such as the lattice on which a specific model is
studied. Model-dependent “details” enter the amplitude
of the scaling function.

The rather strong assumption that the studied quan-
tity F'(z,y) is a homogeneous function can in general
only be justified a posteriori, by the empirical success in
extracting invariant, universal features from data sets.

In the following sections, we will discuss scaling rela-
tions of the above form for the ¢-perimeter and the ¢-glove
of DLA, PH, and IP. To this end, we will assume that
the scaling variable is an appropriate combination of the
chemical distance ¢ and the number M of occupied lat-
tice sites. We relate the exponents of the encountered
scaling relations to known exponents of these models, in
particular, the fractal dimension of the object itself and
the fractal dimension of its external perimeter, respec-
tively. Moreover, some features of the functional form of
the scaling functions will be explained.

(3.2)

a/b

B. Scaling of the £-perimeter P(M, ¢)
1. Scaling arguments

We first analyze the f-perimeter in detail and derive a
scaling form for the behavior of P(M,¥).

For small but fixed values of ¢ (much smaller than a
crossover value £, on the order of the linear extension
of the cluster), we expect that P(M,{) is asymptotically
proportional to M [42],

P(M,¢) ~b(&)M

[£ < Ly (M))]. (3.3a)

To study the ¢ dependence of b({), we note that if
¢ increases, P(M,¢) will initially decrease due to the
smoothening process as the ragged perimeter of the
fractal is successively filled in [Figs. 1(b,c)]. We next
argue that the fractal dimension dj characterizes this
smoothening process. If we cover the fractal by boxes
of linear size €, then the number of boxes containing
points of the fractal is N(e) ~ ¢~%/. The perimeter of
the boxes is an approximation to the £(= ¢/2)-perimeter
of the fractal. Thus, for fixed M, P(M,£) is proportional
to N(20)¢ ~ £74+1; s0 we expect

[£ < £x(M)).

For £ > £, (M) details of the cluster structure are no
longer important. Since voids in fractals occur on all
length scales, up to the size of the fractal, we expect
£, (M) to be of the size of the linear extension of the
fractal. Thus, for large ¢, the f-perimeter behaves like
the perimeter of a nonfractal object,

b(£) ~ -+ (3.3b)
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P(M,t)~ ¢ [€> £, (M)]. (3.3¢)
The relations (3.3a)—(3.3c) can be cast into a single scal-
ing form [cf. Eq. (3.2)],
P(M,£) ~ £2f(u), u=£/MP, (3.4)
where the scaling function f(u) and the exponents a, 3
are constrained by Egs. (3.3a)—(3.3c) The exponents «
and (3 are determined as follows. (i) Since for large values
of u, when £>> £, (M), P(M,£) does not depend on M,
we expect that f(u) approaches a constant. Comparison
of Eq. (3.4) with (3.3c) shows that a = 1. (ii) For small
arguments, f(u) must display a power-law singularity in
order to recover Eqs. (3.3a) and (3.3b). If we assume
that f(u) ~u™¥, then
P(M,£) ~ 7Y /MY (3.5)
and we obtain ¢ = dy and § = 1/y = 1/ds. The con-
stant crossover value uy between these two regimes is
determined by £y;
ux = £y (M) /MY, (3.6)
Thus ¢4 (M) has a power-law. dependence on M, £, ~
M?'/4s  and is proportional to the linear extension M1/%s
of the cluster.
Finally, the scaling relation (3.4) takes the form

P(M,£) ~ £f(£/MY/41), (3.7a)

1185

where

const, u — oo. (3.7b)

)~ { o 50

We note that a scaling plot of f(u) as in Fig. 2(a)
can be used to determine dy. The unknown value of
ds should be considered as a parameter that must be
adjusted in order to obtain the best possible data col-
lapse. The exponent characterizing f(u) for small u can
be used to test the value of df. For growth models such
as DLA, the scaling of the £-perimeter combines informa-
tion about the growth dynamics — the increasing linear
extension of the cluster as a function of cluster mass —
with information about the static structure of a fixed size
cluster — here, dy.

2. Diffusion-limited aggregation

We study the ¢-perimeter of PH and IP as test cases
in Appendixes B and C while here we concentrate on the
determination of the scaling function fppa (u) for the £-
perimeter of DLA.

Even rather small on-lattice DLA is known to display
lattice effects that lead to anisotropic cluster growth [43],
since growth occurs preferably in the direction of the lat-
tice axes. Consequently, we base our analysis of DLA
on clusters grown off lattice. The coordinates of 2D off-
lattice DLA clusters are discretized such that the clus-
ter is a connected object of nearest- and next-nearest-
neighbor lattice sites.

(T;DLA'(M;‘)' / ,t

10° . 10° ——— l
a b
10° @ ] ® ]
10 1 10 1
10° 1 10 .
10? 1 10 1
10! %‘%%n T %ﬁ% «
o To o
o 10° P S S B
0.001  0.01 0.1 1 10 0.001 0.01 0.1 1 10
() M/ () W
FIG. 2. (a) The scaling function fpLa(u) = Ppra(M,£)/f vs u = £/MY*™ for the DLA case. M
refers to the number of particles in the aggregate, ranging from 50 to 120000. The data are obtained
by averaging over 21 2D off-lattice DLA clusters. The £ values are 1 (A), 3 (M), 7 (e), 15 (4), 23

(v), 31 (O), and 43 (O). Results obtained for £-perimeters determined using nezt-nearest neighbors are not displayed; however,
they differ only in the amplitude of Ppra(M,£). (b) gora(v) = GoLa(M,£€)/¢ vs u = £/M*/*™ for DLA. The (scheme B)
1-glove is a subset of the 1-surface, the set of nearest-neighbor sites of the cluster, comprising the sites that are still susceptible
for further growth. Displayed {-values are 1 (A), 2 (W), 3 (o), 5 (V), 7 (), 15 (O), and 31 (O). The data are averaged
over 21 DLA clusters of mass M = 50,...,120000. We obtain similar results that only differ in the amplitude of Gpra (M, ¥£)
if nearest-neighbor connectivity in scheme B is replaced by next-nearest-neighbor (NNN) connectivity or if the £-gloves are
calculated as subsets of £-perimeters based on NNN connectivity.
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In Fig. 2(a) we display our calculation of the scaling
function

fora(u) = Pora(M,0)/¢

for DLA, where u = £/M?'/%s is the scaling variable. We
analyze 21 off-lattice DLA clusters for a sequence of val-
ues of M up to 120 000.

For small u, we find straight line behavior of fpra(u)
with a slope of ~ 1.73£0.03, which is close to the fractal
dimension dy = 1.715 + 0.004 [44] of DLA as obtained
from analyses of the scaling of cluster mass as a function
of its radius of gyration. For large u, fpra(u) converges
towards a constant value [Eq. (3.7b)] equal to 4, as ex-
pected for off-lattice DLA discretized on a square lattice.

(3.8)

C. Scaling of the £-glove G(M, ¢£)
1. Scaling arguments

In general, since the {-glove is a subset of the /-

perimeter, we know that

G(M,¢) < P(M,?). (3.9)
Therefore, if we consider the £-glove and the ¢-perimeter
of a fractal for equal but arbitrary £ as fractals in their
own right, we obtain the relation dperimeter > dglove;
where dperimeter and dglove are the fractal dimensions of
{-perimeter and ¢-glove for fixed, but arbitrary ¢. In Sec.
III B, we have argued that in fact dperimeter = dy, inde-
pendent of £, provided £ < £.

A similarly strong statement cannot be made for the
{-glove. For example, in Appendix B we show that the 1-
glove and the 2-glove of percolation have different fractal
dimensions.

We will ask whether a similar effect, viz., a difference
in the fractal dimension of {-perimeter and ¢-glove for
specific £, occurs also in other fractals, e.g., DLA. To
this end we will assume that the scaling relations (3.7a)
and (3.7b) also hold for the scaling of the length of the
{-gloves G(M, £),

G(M, €) ~ Lg(£/ M), (3.10a)
where
u %, u—0
g(u) ~ { const, u — o0. (3.10b)

Here, we use the symbol g to denote the scaling functions
associated with the /-gloves.

Different fractal dimensions of ¢-gloves for different ¢
— as in the percolation case — will be heralded by a
breakdown of Egs. (3.10a) and (3.10b).

2. Diffusion-limited aggregation

The motivation to study the £-gloves of DLA originates
in the quest for a structural model of the cluster structure
[20-24,26]. DLA fjords display pronounced sidebranch-

ing and as a result of the growth process, two of these
branches may approach each other from opposite sides of
the fjord to form a “neck.” If such neck formation is an
essential feature of DLA structure, then it can possibly
be detected in the scaling behavior of the ¢-gloves, since,
if £ increases, narrow necks are no longer penetrated by
the f-glove. As a consequence, for £ > 1, the /-glove may
have a smaller fractal dimension than the DLA cluster
itself.

The mass dependence of the number of perimeter
sites susceptible to further growth in 2D on-lattice DLA,
which is identical to the 1-glove of the cluster, has been
studied in [45] in a different context and found to be
proportional to the cluster mass, in agreement with the
scaling relations Egs. (3.10a) and (3.10b). We display a
scaling plot [Fig. 2(b)] of

gDLA(u) = GDLA(M,E)/K

for £ > 1, where the scaling variable is u = £/M*/7L.
Here, the exponent 1.71 yields the best data collapse. We
find the exponent of the singularity of gppa (u) for small
u to be 1.73 + 0.05. Both numbers, 1.71 and 1.73 £ 0.05,
agree with the fractal dimension of DLA determined in
Sec. IIIB. The data collapse implies that all the ¢-gloves
of DLA, with { € £y (M) ~ M?'/45 have the same fractal
dimension as the cluster itself.

Thus we do not find evidence for a different scaling of
narrow necks in the DLA structure from a study of the
{-gloves. Also, unlike the percolation models, DLA does
not display different fractal dimensions of ¢-perimeters
and {-gloves.

(3.11)

IV. DISTRIBUTION OF LAGOON SIZES
AND NECK WIDTHS FOR DLA

Next, we will describe another attempt made to iden-
tify effects of neck formation in DLA fjords. We first
introduce the notion of “lagoons” to generalize the no-
tion of voids in regular fractals to the case of loopless
fractals (or any collection of points).

A. Definition of “necks” and ‘“lagoons”

Consider, e.g., a circle with a small opening of width
w = 24y, a simple example of a loopless object [other
examples with various openings are given in Figs. 3(a)-
3(c)]. Cover the surface with gloves, one after the other.
When the number of gloves equals £y, the glove cannot
penetrate into the opening, leaving some interior sites va-
cant. For a general connected object, after having placed
a sufficient number of gloves, we recognize several distinct
connected patches of vacant sites isolated from each other
by gloves. Each of these patches identifies what we call
a “lagoon.” We define the lagoon size to be the number
s of sites in each patch. Thus we exzclude ¢-perimeter
sites with £ < ¢, from contributing to the lagoon size [for
illustration, see Figs. 3(e)-3(f)].

The sites where glove £y “touches itself” identify a
“neck” of width w = 2¢, [46] — see Figs. 3(a)-3(c).
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Roughly speaking, w is the diameter of the smallest disk
that cannot penetrate into the lagoon. Using this “defi-
nition,” we obtain the neck width w = 24y = 2 for all the
objects in Figs. 3(a)-3(c).

Even for a point set which is not connected — in con-
trast to the cluster types considered in this paper (DLA,
PH, IP) — “lagoons” are still a meaningful concept.
They identify volumes in space that are not accessible
from the “exterior” by balls of diameter > w, where w is
the neck width of the lagoon.

B. Lagoon-size distribution Njs(s)

We now analyze the number Njs(w, s) of lagoons with
size s and neck width w for discretized off-lattice DLA of
mass M, where we take M to be the number of occupied
lattice sites of the discretized cluster. First, we com-
pute the number Njs(s) of lagoons of size s by summing
Npr(w, s) over all neck widths w, i.e.,

Num(s) =) Nu(w,s). (4.1)

(d) (e) M

FIG. 3. (a), (b), (c) Small lagoons with openings of differ-
ent sizes. The 1-gloves |[boldface symbols (D] cannot pene-
trate into these openings. A lagoon can be identified by the
vacant sites (x) left inside once its opening is “sealed.” Some
L-perimeter sites [(D] — those neighboring previous gloves or
the object itself — are retained in the construction process for
technical reasons concerning the next-nearest-neighbor con-
nectivity of the discretized off-lattice DLA clusters. The la-
goon area s is given by the number of sites left vacant, here
s = 2. In all cases (a)—(c), the lagoon is sealed by the
£o = 1l-glove. Thus, the neck width according to the defi-
nition in Sec. IV A is given by w = 24y = 2. (d) The opening
is so large that no lagoon is formed. (e),(f) A more reason-
able definition of the total lagoon size is obtained, if perimeter
sites with £ < £ inside the lagoon are removed. To this end,
we (1) identify the perimeter sites of the vacant lagoon sites.
(e) In step (2), those perimeter sites, which (i) do not be-
long to the object itself, (ii) do not separate two lagoons, and
(iii) have no neighbor with larger ¢-value than themselves are
freed. (f) The removal process [steps (1) and (2)] is repeated
as long as additional sites are freed. All vacant and freed sites
associated with the original smaller patch now contribute to
the total lagoon size 3; here § = 9.

In order to derive the scaling behavior of Nas(s), we con-
sider a covering of the fractal with boxes of linear size
€. The number of boxes necessary for such a covering
is ~ €% . If € is now increased to € + de, then only
~ (€ + de)™9 boxes are required to overlay all sites of
the fractal. The difference in the total area covered by
boxes is accounted for by voids or lagoons of linear size
€. Thus we obtain for the number of voids and lagoons
N (e) the expression

N(e)de ~ (die_df> de ~ =471 de. (4.2)
€

Earlier studies of DLA [47] indicate that DLA is a treelike
object and consequently the occurrence of loops leading
to voids in the cluster structure is negligible. Thus, for
DLA, N(e) should be considered to be the number of
lagoons of linear size €. Because € and s are related by
€ ~ /2, we obtain the distribution Nps(s) of lagoon
sizes by changing variables,

Nae(s) = N(© % ~ 577,

- (4.3)

where 7, = df/2 + 1.
In Fig. 4(a) we show the normalized distribution

na(s) ENM(s)/ZNM(s).

The data are obtained by averaging over 21 DLA clusters
with masses M = 10000, 40000, and 120000. Over al-
most three decades of lagoon sizes, with increasing range
for larger clusters, we find power-law behavior,

(4.4)

np(s) ~s™ ™, (4.5a)
with an exponent

7, = 1.84 + 0.03. (4.5b)

To ensure that our result (4.5b) does not depend in a
significant manner on the specific definition of the lagoon
size s, we will here briefly study the size distribution of
lagoons as a function of the total lagoon size 5. The
total lagoon size § includes the ¢-perimeter sites situated
“between” the vacant lagoon patch and the fractal object.
We refer the reader to Figs. 3(e,f) for illustration of the
concept of total lagoon size. Note that for each lagoon,
we have § > s. ~

In analogy to Nps(s,w), we consider N(§,w), the av-
erage number of lagoons of “total size” § and neck width
w in a DLA cluster of mass M. The inset of Fig. 4(a)
presents the normalized distribution, defined in analogy
to Eq. (4.4),

7ip (3) ENM(g)/ZNM(é),

(4.6)

where

Nm(8) =) Num(w,3), (4.7)
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analogous to Eq. (4.1). From the figure, we see that
Aipe(8) is very similar to nps(s). In particular, 7ips(5)
displays power-law behavior in the range 10 < § < 2000,

~ ~ Fo

np(8) ~ s~ (4.8a)
Finite cluster sizes cause the breakdown of power-law
behavior for large §, but the range over which the power-
law applies increases with cluster mass M.

We find the exponent 7, of the power law (4.8a) to be

7s = 1.83 £ 0.06. (4.8b)
T T
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FIG. 4. (a) Lagoon-size distribution of DLA. We plot the
normalized number of lagoons nas(s) vs their size 10log,, s.
Data are obtained from 21 off-lattice 2D DLA clusters
with masses M = 120000 (O), M = 40000 (O), and
M = 10000 (A). The exponent characterizing the power-law
part 10 < s < 10000 is 7, = 1.84 + 0.03. The inset
shows the distribution 7a(3) as a function of 10log,;, § for
M = 40000 (O) and M = 10000 (O). From the slope, we
obtain an exponent 7; = 1.83+0.06. From Eq. (4.3) we expect
that in both cases 7 = 1 4 df/2 ~ 1.855. (b) Neck size dis-
tribution np(w) of DLA. For the masses M = 120000 (Q),
M = 40000 (O), and M = 10000 (A) the normalized dis-
tribution ma(w) is displayed. From the slope we obtain
Tw = 2.6 £ 0.25. The theoretical value is 7, = dy + 1 ~ 2.71.

To within the accuracy of our simulations, 7, equals 7,.

From our calculations and the theoretical prediction in
Eq. (4.3) we conclude that the lagoon-size distribution
of DLA is characterized by its fractal dimension and no
effect of necks is visible. In this light, we use the lagoon-
size distribution as an independent measure of the fractal
dimension of DLA. From 7, via Eq. (4.3) we obtain an
estimate for dy = 2(7, — 1) = 1.68 £ 0.06; and similarly
from the power-law behavior of 757(5) we conclude dy =
1.66 £ 0.12.

C. Joint distribution Nps(s,w) of lagoon size
and neck width

We now discuss the joint distribution Nps(s,w). The
inset of Fig. 5 shows the behavior of N (s, w) in a con-
tour plot. We observe that most of the lagoons in DLA
have small neck widths w. In particular, we observe that
the distribution shows a pronounced vertical “ridge” that
singles out a value for w for every given lagoon size s and
that a significant number of large lagoons display small
neck widths. Thus we are led to consider “cuts” through
the distribution Njps(s,w) considering s as parameter and
w as independent variable. Let nps(s,w) be the number
of lagoons of size s in clusters of mass M and normalized
with respect to w,

ny(s,w) = NM(s,w)/ZNM(s,w'). (4.9)

Figure 5 displays nas(s,w) for several values of s as a
function of the rescaled neck width w/s®5. The ordinate
is nar(s, w)s%®, where the factor s%° is included to pre-
serve the normalization of nps(s,w). We obtain a data
collapse which implies that the neck width scales as 5%,
the linear extension of the lagoon [48]. We estimate the
error of the exponent to be 0.05. However, the location
of the maximum of the distributions nps(s,w) is at quite
small values of w (e.g., w = 10 for s = 2500). Moreover,
the size distribution of lagoons is maximal at small s,
so we also expect the distribution of neck widths to be

maximal for small w.

D. Neck-width distribution Njs(w)

A study of the normalized distribution nps(w) of necks
as a function of their width w, in analogy to the normal-
ized lagoon-size distribution mas(s), confirms that the
distribution is maximal for small w. The distribution
nar(w) is obtained from Nps(s,w) using the one-to-one
correspondence of neck widths and lagoons, i.e.,

nM(w)EZNM(s,w)/ZNM(s,w). (4.10)

Figure 4(b) shows that na(w) can be approximated by
a power law,

ny(w) ~w™ "™, (4.11a)
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where

Tw = 2.6 £ 0.25. (4.11b)

To interpret this result, we employ the relation be-
tween most probable neck width and lagoon size w ~
s1/2. Then we obtain the distribution nps(w) by a change
of variables in nps(s) [Eq. (4.3)], i.e.,

ds _r
ny(w) = nM(s)E; ~w T, (4.12a)
where
Tw =ds +1. (4.12b)
From Eq. (4.12a) we obtain
df=7,—1=1.6+025 (4.12¢)

for the fractal dimension of DLA.

We note that our results on the lagoon-size and neck-
width distributions are consistent with a self-similar pic-
ture of DLA, in which the average neck width scales pro-
portional to the linear size of the lagoons [19,20]. Our
results support the finding [20,26] that the ratio of aver-
age fjord width to depth approaches a constant for large
fjords (fjords are the regions between two major branches
of a DLA cluster).

However, for two reasons our results are also consistent
with a hierarchical “void-neck” picture for the structure

10! . ——

1189

of DLA [21,23,49] — which consists of a succession of in-
creasingly larger, self-similar lagoons connected by nar-
row necks scaling weaker than proportional to the lagoon
depth. (i) We find that even very large lagoons display
very narrow necks and that the most probable neck width
is located at rather small values of w. (ii) The void-neck
picture (23] has been devised to provide an explanation
for the peculiar scaling behavior of the smallest growth
probability pmi, of DLA. However, to explain the scaling
behavior of pp;y, it suffices if one “void-neck” configura-
tion exists per cluster at whose bottom pp,;, resides. The
existence of such a configuration is still possible in the
light of the presented results.

E. The accumulated lagoon area A (w)

One particular “moment” of the distribution Nas(w, s)
can be attributed an immediate geometric meaning. De-
fine Ap(w) to be the average accumulated size of all
lagoons with neck width smaller than or equal to a given
w,

Ap(w) = Z ZsNM(s,w').

w'=0s=1

(4.13)

Operationally, Aps(w) is the mean area that a particle of
linear extension w is affected by when it approaches the
object. In analogy to Eq. (3.3a) for the £-perimeter, we

T

I G A

T

107t

0.01 0.1

FIG. 5. Distribution nas(s, w) for M = 120000. ns(s, w) is obtained by normalizing the histogram Nas(s, w) with respect to
summation over w. On the abscissa we have plotted the rescaled neck width w/s°®, whereas the ordinate displays n.as (s, w)s®.
The factor s°° is included to preserve the normalization of the distribution. From the quality of the scaling for different values
of the exponent o used to rescale the neck width w/s® we estimate a ~ 0.5 + 0.05. Data are averaged over 21 off-lattice 2D
DLA clusters. Different symbols denote different lagoon sizes: s =1 (O), 3 (O), 10 (A), 25 (), 100 (e), 250 (m), 1000 (a),
2500 (Vv). We conclude that the width of a neck associated with a lagoon scales as a typical linear extension of the lagoon.
Inset: Contour plot of Na(s,w). The ordinate is 10log,, s and the abscissa the linear neck width w; here, M = 120 000. The
spacings between successive levels are factors of 10, the lowest level is 0.1. The inset shows that even for large lagoons the most
probable neck width is small.
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expect that

Ap(w) ~ a(w)M (w < wx). (4.14)

Here, a(w) describes the w dependence of Ap(w) and w
is a crossover neck width which we expect to be propor-
tional to the span L of the cluster (although considerably
smaller than L).

For large w > wyx, when the necks of all lagoons
have been detected, A (w) saturates to a w-independent
value Aps(00), which still depends on the mass of the ag-
gregate. The dominant contribution to Aps(co) arises
from lagoons with a linear extension ~ L. Thus Aps(o0)
scales as L2,

Apr(00) ~ L% ~ M?/ 4 (w > wy). (4.15)

We next make a scaling ansatz to describe both the M
and the w dependence of Aps(w). The scaling variable is
chosen to be u = w/M/% | since we expect M'/47 to be
the relevant length scale in the problem. We obtain

Apr(w) ~ M2/ h(w/M45), (4.16a)
where
u? 4 u—0
h{u) ~ { const, u — oo. (4.16b)

Power-law behavior of h(u) for small u is necessary to re-
cover Apr(w) ~ M for small w and implies that A (w),
considered for fixed M, scales as w297,

In Fig. 6 we present a plot of h(u) = Apr(w)/M?/17
vs u = w/M?'/*7. For small values of the scaling variable
u, we observe power-law behavior characterized by an
exponent of 0.32+0.02 corresponding to dy = 1.68+0.02.
Since the slope measures the codimension 2—dy, our 6.3%
error in the slope translates to a 1.2% error in the value of
dy. For large values of u, h(u) saturates and approaches

T — T L S e e e e

0.1 -

AM,w) / M7

1 1 J

0.01 0.1
w/ M/

FIG. 6. Scaling function for the accumulated lagoon area
h(u) = Apm(w)/M*'7 vs w = w/M'Y*7. Data are ob-
tained from 21 off-lattice DLA clusters in the mass range
300-120000: 300 (v), 1000 (a), 3000 (W), 10000 (e),
30000 (), 50000 (A), 80000 (O), and 120000 (O).
Next-nearest-neighbor connectivity is used in the glove de-
termination. The labels on the ordinate extend from 0.06 to
0.2.

a constant, as expected (4.15). Again, we see that only
the self-similarity of DLA is needed to explain the scaling
properties of Aps(w) and that no effect of necks persists
asymptotically.

V. DISCUSSION AND CONCLUSION

We have introduced an algorithm to study properties of
2D fractal objects. We have studied the £-perimeter and
the ¢-glove of DLA and, in the appendices, of the percola-
tion hull and invasion percolation—as well as the lagoon-
size distribution Nas(s,w) and the neck-width distribu-
tion Nps(w) of DLA.

For the £-perimeter and the ¢-glove we find scaling re-
lations with interesting properties.

(i) The scaling relations for the {-perimeter can be
used for the determination of the fractal dimension of
a wide class of fractal growth phenomena. We have
used the scaling of the ¢-perimeter successfully to numer-
ically evaluate the fractal dimension of DLA, PH, and IP.
We have confirmed that our method also works for the
Sierpinski gasket, for which we can give an exact solu-
tion for the scaling function for £-perimeter and ¢-glove
(Appendix A).

(ii) The scaling plots for the {-gloves are sensitive to
peculiarities in the scaling behavior of the fractal surface.
In particular, a breakdown of the proposed scaling form
for the {-gloves occurs if the fractal dimension of the ¢-
gloves depends on the index £. For example, the crossover
from hull dimension to accessible perimeter dimension of
conventional percolation as a function of £ is apparent in
a scaling plot of G(M, ) for PH. Using {-gloves, we find
that the hull dimension of IP with trapping is distinct
from the fractal dimension of the IP cluster and very
close if not equal to the value of d, = 7/4 for conventional
percolation. The accessible perimeter of IP with trapping
(£ > 1) is indistinguishable from the accessible perimeter
of IP without trapping. We find that its fractal dimension
agrees with the value for conventional percolation d, =~
4/3 to within our error bars.

In our analysis of 2D off-lattice DLA in circular ge-
ometry, we obtain six estimates for dy from the scal-
ing relations for the /-perimeter (Sec. IIIB) and the
£-glove (Sec. IIIC), from the lagoon-size distributions
na(s) and np(5) (Sec. IV), from the neck-width dis-
tributions (Sec. IV) and from the accumulated lagoon
area (Sec. IVE). We obtain a weighted average [50] of
dy = 1.697 £ 0.015. Previous studies on 2D off-lattice
DLA obtain dy = 1.715(£0.004) [44] from the scaling of
the radius of gyration of DLA with cluster mass. Our
result disagrees with the value df = 1.6 +0.02 [51] found
using a generalized box-counting procedure.

Like a recent analysis of the branching properties of
DLA [52], the analysis of the lagoon-size and neck-width
distributions in 2D off-lattice DLA is consistent with
an overall self-similar picture of DLA [20,19]. However,
certain features of the growth probability distribution
(GPD) of DLA [14,23-25] cannot be understood in the
framework of a purely self-similar structure of DLA.

The void-neck model [21,23] explicitly takes into ac-
count fluctuations around a self-similar structure in the
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form of side branches reaching far into the cluster fjords.
Since in principle the presence of one void-neck configu-
ration per cluster suffices to explain some of the peculiar-
ities of the GPD of DLA, our analysis does not preclude
the void-neck model. However, in the light of the result
that the typical neck width is proportional to a typical
measure for the linear size of a lagoon, it seems unlikely
that the void-neck model can serve as model for the typ-
ical structure of DLA. The question of what to put in its
place remains open.
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APPENDIX A: ¢-PERIMETER AND 4-GLOVE
FOR THE SIERPINSKI GASKET

In this appendix we demonstrate the scaling behavior
of the {-glove and the £-perimeter for the Sierpinski gas-
ket, an elementary deterministic fractal. In Figs. 7(a)-
7(d) we show the first four construction steps of the
Sierpinski gasket. Here, we use continuum analogues of
the discrete quantities introduced in Secs. II, III B, and
IITC. The length L of one of the sides of the gasket

(d)

FIG. 7. (a)-(d) The first four construction stages of a
Sierpinski gasket of base length L. In (a) we also indicate
the £-glove, consisting only of points accessible from the ex-
terior, which here is the perimeter of the » = £-neighborhood
of the compact equilateral triangle. In the first iteration step,
shown in (b), we obtain one internal void with height half
that of the original triangle. In addition to the £-glove, the
£-perimeter comprises also contributions from internal voids
if £ is so small that these voids are not completely filled in.

corresponds to the “overall linear extension” of the in-
vestigated fractal. The Euclidean distance £ to the sides
of the gasket and its internal voids corresponds to the
chemical distance as introduced in Sec. II.

The £-glove is constituted only of sites that are acces-
sible from the exterior. Apparently, the length of the
{-glove G({) is simply the length of the perimeter of the
object indicated in Fig. 7(a), which is the Minkowski
sausage of a compact equilateral triangle. The length
G({) follows from elementary geometric considerations
as the sum of the length of the linear and the circular
segments of the perimeter,

G(f) = 3L + 2n¢. (A1)
We divide by £ and obtain the ratio G(¢)/¢,
G ., (e\!
- = 3 (E) + 2m, (A2)

where we have rewritten the right hand side of the equa-
tion as a function of the “scaling variable” ¢/L. The
structure of Eq. (A2) is the proposed scaling form
(3.10a). In particular, for constant L, the singularity as
£ — 0 is characterized by an exponent —1, corresponding
to the “fractal” dimension —(—1) = 1 of the {-glove (here
a one-dimensional object), whereas for large ¢ the ratio
G /! approaches 2, the ratio of perimeter to radius of a
circle.

For the present example it is also possible to calculate
an analytic expression for the scaling function P(¢)/£ of
the {-perimeter. We consider the iterative construction
of a Sierpinksi gasket of fixed base length L. In the zeroth
construction step, we do not have any internal voids of
the gasket contributing to P(¢) and expression (A2) with
G(¢) = P({) applies. In the first iteration — indicated
by the superscript (1) — we must add the contribution
arising in the large central void [see Fig. 7(b)]. We obtain

if (3% -6v3)<0

L 0
(1) =3=
P()/e=3 7 +2m+ { %% — 63 otherwise. (A3)

In each generation, we must add the contribution from
the newly generated internal voids. However, geometrical
considerations show that for any given value of £, we only
pick up contributions if the height of a void added in the
kth iteration exceeds £ by a factor of 3 or, equivalently,

3L

—— —6v3>0. A4
For simplicity, let us consider £ = ¢, such that 3L/2%¢; —
63 = 0; £ is one-third of the height of one of the inter-
nal equilateral triangular voids added in the kth iteration.
The dimensionless fraction L/}, results to

L _genys,

@ (A5)

In each generation the base length of the voids is reduced
by a factor of 1/2 and their number is multiplied by 3. If
we replace £ in Eq. (A3) by ¢; and perform k iterations,



1192 S. SCHWARZER, S. HAVLIN, AND H. E. STANLEY 49

we obtain a finite sum for the dimensionless ratio of ¢-
perimeter to £y,

P(t) )t = Ry is“*” 3L _6y3 (A6)
k)/ Lk A p 2i 4y, '

Since all contributions from iteration steps k+1,k+2, ...
vanish, the expression (A6) is exact for the fully grown
fractal. In analogy to the case of the f-glove, P({) is
the perimeter of the Minkowski sausage, here of the fully
grown fractal and generated by dilation of the Sierpinski
gasket with disks of radius ¢;.

It is straightforward to perform the sum in Eq. (A6).
Moreover, if we use (A5) to replace k then, after some
algebra, we obtain, for all kK > 1,

P(t)/te = 3v/3 [ — AN 3V3 + 271, (AT
(/b =33 (=) (%) " +avaren an
Here, df = log3/log2 is the fractal dimension of the
Sierpinski gasket. We see a power-law singularity char-
acterized by the exponent —d; for small £. If £ is larger
than ¢;, or one-third of the height of the central void,
we must replace Eq. (A7) by the expression (A2) for the
£-glove. In fact, ¢-glove and ¢-perimeter are identical for
large £. Thus we recover the large £ behavior of (A2) and
P(e)/t = 2m.

In conclusion, we have demonstrated that the scaling
forms for /-perimeter and ¢-glove hold for the Sierpinski
gasket. Not only do we recover the £/L — 0 and ¢/L —
oo limits as predicted in Secs. IIIB and IIIC but also
the form of the scaling function.

APPENDIX B: £~-PERIMETER AND ¢4-GLOVE
FOR THE PERCOLATION HULL (PH)

In this appendix we discuss the results of applying the
scaling relations for £-perimeter and {-glove to a random
fractal, here the hull of percolation clusters. The fractal
nature of the PH is established and their fractal dimen-
sion is known to be dp = 7/4 exactly [29,31,53].

1. The £-perimeter of the PH

We consider the hull of a percolation cluster as a subset
of the set of percolation cluster sites. The hull can be
obtained, e.g., by a “walk” around the cluster. To this
end, imagine a pointer directed from a tail site T to a
head site H, which are two nearest-neighbor sites on the
square lattice. The tail site shall be located in the cluster
hull while the head site shall be an external perimeter
site.

(i) Now turn the pointer counterclockwise around T by
an angle of /2 so that its head points to a new site H'.
The pointer’s tip will encounter either another external
perimeter site or a cluster site. (ii) If the new head site H'
is a perimeter site, then we repeat step (i). If, otherwise,
we hit a cluster site, then we move the tail of the pointer

in one of two ways. (a) If the next-nearest-neighbor site
S located “between” H and H' is a cluster site, then S
becomes the new tail site and we restore H as head site.
(b) If S is, however, a perimeter site, then S becomes the
new head and H’ the new tail site of the pointer.

We repeat steps (i) and (ii) until the pointer has found
its way around the entire cluster and is back in its starting
position. The sites visited by the tail of the pointer con-
stitute the hull of the percolation cluster. The perimeter
sites visited by its head constitute the external perimeter
of the cluster. In Fig. 1, hull sites are marked by black
squares. Reference [12] describes how to efficiently gen-
erate percolation hulls using the above described “walk”
technique without having to grow the entire percolation
cluster.

In Fig. 8(a) we present data for the ¢-perimeter of PH.
The scaling function is

fr(u) = Po(M,0)/¢, (B1)
where P, (M, {) is the number of sites in the ¢-perimeter
of percolation hulls of mass M and u = ¢/M/ is
the scaling variable defined in Eq. (3.7a). Data are
obtained by averaging over 50 percolation hulls with
M = 50,...,50000, disregarding hulls with span of more
than 1000 lattice units. For small u, as predicted by
relation (3.7a), we observe a power-law singularity char-
acterized by an exponent of about —1.75+0.03, in agree-
ment with the fractal dimension of PH. For large u, fn(u)
approaches the constant value 4, which is the ratio of
perimeter sites to radius of a diamond-shaped object on
the square lattice.

2. The £-glove and accessible perimeter of the PH

We now study the ¢-gloves of PH. We will see that
the ¢-gloves for £ > 1 are characterized by a different
fractal dimension than the PH itself. In this section we
use the PH example to demonstrate the usefulness of the
glove algorithm in detecting peculiarities in the scaling
properties of the PH. When we modify our definition of /-
gloves slightly, then we can see that the fractal dimension
of the 1-glove is different from that of the l-gloves, with
[ > 1, leading to a breakdown of the scaling relation
(3.10a) for small /.

To this end, consider the perimeter-walk procedure in-
troduced in the preceding section. The pointer’s tail vis-
its all sites of the PH. Its tip visits only perimeter sites
and on completion of the walk, it has visited all sites of
the external perimeter of the cluster. For illustration of
the external perimeter, see Fig. 9. Here and in Appendix
C, we want to consider the external perimeter as 1-glove
of the studied object. Higher-order ¢-gloves are defined
by iteration; i.e., the 2-glove is the external perimeter
of the union of the object and its 1-glove, the 3-glove is
the external perimeter of the union formed by the object
itself, its 1-glove and its 2-glove, and so forth.

The main difference between this definition and the
one used for the study of DLA is that sites which are
only accessible through next-nearest-neighbor links are
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FIG. 8. (a) Scaling function fi(u) = Pn(M,£)/£ for the {-perimeter of percolation hulls (d» = 7/4), vs u = £/M*175 The
solid line is a guide to the eye and has a slope of —d, = —7/4, which reflects the slope for the expected asymptotic behavior of
the scaling function for u — 0. The displayed £ values are 2 (O), 3 (A), 5 (V), 7 (e), 11 (m), 15 (A), 23 (V), 31 (0), and 47 («).
Data are averaged over 50 hulls with span < 1000 lattice units and 50 < M < 50000. (b) Scaling function gxn(u) = Gr(M, £)/¢
vsu=4{/M 1/1.75 for the £-gloves of percolation hulls. The solid line has slope —4/3 which is the slope we expect for the scaling
function gx(u) for small u. We find a slope of 1.33 & 0.04 ~ —d, for the behavior of gn(u) as v — 0. The displayed £ values
and associated symbols are as in (a) with the addition that £ = 1 is represented by (O. Note that the behavior of the £ =1
data points is different. As a function of u, they asymptotically lie on a line with slope equal to —dr = —7/4 as indicated by

the dashed line.

now included into the respective {-glove [54]. However,
the £-glove remains a subset of the /-perimeter and thus
for fixed £ < ex, dperimeter > dglove-

Before we turn attention to our calculations we must
state some of the results obtained for the external and
the accessible perimeter of percolation. The accessible
perimeter consists of sites that are accessible from “in-
finity” by nearest-neighbor connections [cf. Fig. 1(a)
for illustration]. The accessible perimeter of standard
percolation clusters — which is identical to the accessi-
ble perimeter of PH — has been further constrained and

N
N

(b)

FIG. 9. To illustrate the algorithm used to determine the
£-gloves in the case of PH and IP, we use the same “object”
and symbols as in Fig. 1. (a) l-glove. The 1-glove is the
set of external perimeter sites of the cluster, and is denoted
by @. (b) 1-glove and 2-glove. The 2-glove is the external
perimeter of the set union of the object and its 1-glove sites.
The 2-glove is denoted by @.

has been investigated as a function of the radius r of a
probe particle [30] approaching the perimeter from the
cluster exterior. In particular, those perimeter sites have
been considered which are connected to the exterior of
the cluster by a path of minimum width 2r (for specific,
small values of r). If r is increased from zero such that
sites enclosed in “patches” only accessible through next-
nearest-neighbor links are no longer accessible, then the
fractal dimension of the perimeter sites accessible to the
probe particle equals d, =~ 4/3 and is independent of r.

The phenomenon that the fractal dimension of the
perimeter is dependent on the radius of the probe par-
ticle is not restricted to lattice percolation [29,31], but
extends to continuum percolation as well [55].

The {-glove may be regarded as the set of possible
locations of centers of diamond-shaped probe particles
— in comparison to the set of 1-perimeter sites acces-
sible to such particles. In both cases, the “radius” of
the probe particle, here »r = £ — 1, limits the number
of accessible locations, because a path of width 2r must
exist that connects the accessible locations with the clus-
ter exterior. For example, the 1-glove penetrates through
next-nearest-neighbor links whereas the 2-glove does not.
Therefore we expect that ¢-gloves and accessible perime-
ters display similar scaling behavior.

In Fig. 8(b) we display a scaling plot of
vs u = £/M*'/4 . Here G4(M,¥) is the number of sites
in the £-glove of PH, and M is the average mass of the
PH used for obtaining the data. Because we generate
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PH and not their accessible perimeters, we here use the
scaling variable £/M*'/4+ instead of E/M;/d“. Here M,
is the mass of the accessible part of the hull and d, its
fractal dimension.

Figure 8(b) confirms that the {-gloves with £ > 1 are
described by the same fractal dimension d, =~ 4/3 as the
accessible perimeters, since the slope of g, (u) at small u
is 1.33 + 0.04.

As explained above, the external perimeter sites, a fi-
nite fraction of the perimeter sites of the percolation hull,
become accessible if £ < 1. The external perimeter has
the same fractal dimension as the cluster hull [12], viz.,
dy, = 7/4, which is significantly different from d, ~ 4/3
[30].

By comparison to the dashed line in Fig. 8(b) it is
evident that G,(M, £ = 1) — denoted by open circles —
is characterized by a fractal dimension of dj, = 7/4 rather
than 4/3 as is Gp(M,£ > 1). Namely, since the number
of sites in the 1-glove G, (M, £ = 1) is proportional to the
number M of sites in the PH, we find

Gp(M, £ =1)/f ~ M/1 ~ (1/L)%. (B3)

The dashed line in Fig. 8(b) has a slope of —dp = —7/4,
which is in good agreement with the slope of G (M, { =
1)/¢ as a function of 1/L.

Different fractal dimensions for £ = 1 and £ > 1 had to
be expected according to the exposition in the preceding
paragraph.

Thus for £ = 1, the scaling relation (3.10a) does not
hold. PH provide an example in which the application of
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the glove algorithm reveals nontrivial scaling behavior of
the fractal perimeter.

APPENDIX C: THE 4£-PERIMETER AND
£-GLOVE OF INVASION PERCOLATION (IP)

Similar to PH, we consider IP as an example applica-
tion of the glove algorithm. Comparatively little is known
about the hull of IP with trapping. We find its fractal
dimension to be close to dj of conventional percolation
(Appendix C2).

1. The £-perimeter of IP

Our IP clusters are grown starting from a central seed
[27] on a square lattice and including the trapping rules
of Ref. [10], namely, that once a loop has formed, no
growth inside the loop can occur. Growth of the clusters
is stopped as soon as their span, the largest extension in
or y direction, exceeds a given value L. References [10,11]
find the fractal dimension of IP clusters to be dip ~ 1.82.

We display data for the ¢-perimeter of IP clusters with
various L in Fig. 10(a). The scaling function fip(u) for
the ¢-perimeter Pip(¢,L) is plotted as a function of the
scaling variable u; here u is the scaled chemical distance
u = £/L. The use of L in the scaling variable is equivalent
to using M1/%®  since L is the linear extension of the
cluster.
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FIG. 10. (a) The scaling function fip(u) = Pip(L,£)/£ for the f-perimeter of invasion percolation (dip ~ 1.82), vs u = £¢/L.
L denotes the span of the clusters and is equal to the linear size of the lattice on which the clusters are grown. The solid line
is a guide to the eye and has a slope of 1.82. Different symbols indicate different values of L, L = 1024 (O), 512 (0O), 256 (4),
128 (), 64 (). The number of configurations averaged ranges from 10 for L = 1000 to 100 for L = 64. (b) Scaling function
gh(u) = Gh(M,£)/€ vs u = £/M*/*-™® for the {-gloves of invasion percolation. The slope for small values of the scaling variable
is 1.33 &+ 0.04 ~ d,. The solid line indicates a slope of 4/3. As in (a), different symbols denote different system size L; the
same symbols have been used for the same system sizes. As in the percolation hull case, the behavior of the £ = 1 data points
is different. The dashed line indicates a slope of = —1.75 equal to the negative fractal dimension of percolation hulls. The
accuracy of our data does not allow us to establish a distinct universality class for the hulls of IP clusters.
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The solid line in Fig. 10 has a slope of 1.82 and is
shown in order to compare the small « behavior of the
scaling function fip(u) with the prediction in Sec. IIIB.
We observe agreement of the behavior fip(u) with Eq.
(3.7a) as the system size increases. However, the system
size seems still too small for an accurate determination of
dip from the scaling plot, since there are deviations from
a straight line both for small ¢/L and in the vicinity of
the crossover to fip(u) — const.

In both cases, PH and IP, we see that the small u be-
havior of the scaling functions f,(u) and fip(u) is consis-
tent with the known values of dj, = 7/4 and dip ~ 1.82,
respectively. This observation supports our statement
(Sec. IIIB) that scaling plots for the {-perimeter allow
for independent measurement of the fractal dimension of
an object.

2. The £-glove and the accessible perimeter of IP

We now consider the ¢-gloves of clusters generated by
the IP process with trapping. In particular, as in the PH
case, the 1-glove will provide information about the hull
of IP.

In Fig. 10(b) we display a scaling plot of gip(u) =
Gip(L,£)/t vs u=£/L. Here Gip(L,£) is the number of
sites in the scheme A f-glove of an IP cluster, and L is
the linear extension of the lattice on which the IP cluster
is grown. The lattice extension L plays the role of the
length scale in analogy to M'/4s in the previous cases in
the scaling variable u = £/L. The solid line in the figure
has a slope of 4/3, which demonstrates that the small u
behavior of gip(u) is consistent with a fractal dimension
d™P =~ 4/3 of the accessible perimeter of IP clusters.

To better understand this result, we next describe the
relation between the conventional percolation and the IP
processes. If one does not apply a trapping rule during
the invasion process, then always the site with the largest
random number on the surface of the invasion percola-
tion cluster is grown, even if it is enclosed in a loop.
The resulting clusters are conjectured to fall into the
universality class of standard percolation [10]. In fact,
if we measure the £-perimeter and the ¢-glove of clusters
grown without the trapping rule, we find that the fractal
dimension of the {-perimeter agrees well with the value
expected from standard percolation dy = 91/48 value
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and the f-gloves display a dimension of ~ 4/3, the value
expected from the scaling of the accessible perimeter of
standard percolation (cf. Appendix B2).

The application of the trapping rule changes the uni-
versality class such that the fractal dimension of IP clus-
ters with trapping, d}P ~ 1.82, is smaller than the fractal
dimension of standard percolation = 91/48 ~ 1.89. Since
the trapping rule only excludes perimeter sites in the inte-
rior of the cluster from further growth, there is no change
in the structure of the external surface of the cluster. In
other words, if on the same lattice with the same distri-
bution of random numbers, two IP clusters are grown —
one with and the other without the trapping rule — then
for each stage in the growth process of the cluster with
trapping, there is a stage of the growth of the cluster
without trapping with exactly the same geometric ar-
rangement of the external cluster surface. Consequently,
the fractal dimension of the accessible perimeter and the
scaling behavior of the £-gloves — £ > 1 — are identical
in both the IP and PH cases.

Just as in the PH case, we observe a breakdown of
the scaling behavior (3.10a) for £ = 1 in the case of IP
with trapping. Here, Gip(L,f = 1) — the number of
sites in the £ = 1-glove, corresponding to the data points
of largest magnitude in each of the data sets shown in
Fig. 10(b)] — display a different functional dependence
on ¢/L than Gip(¢, L) for £ > 1.

The 1-glove can penetrate through diagonal openings.
Therefore all 1-glove sites are nearest neighbors of the
cluster hull. Conversely, all hull sites are nearest or next-
nearest neighbor of at least one 1-glove site. Thus the
number of 1-glove sites is asymptotically proportional to
the number of hull sites. There is, however, no apparent
reason why the hull of IP clusters with trapping should
be in the same universality class as the hull of standard
percolation. If the hull of IP clusters with trapping has a
fractal dimension different from 7/4, then the difference
must be very small, since the data displayed in Fig. 10(b)
are consistent with the assumption that also the hull of
IP clusters is characterized by dj, = 7/4. The consistency
is evident from comparison of the data with the dashed
line of slope —1.75 = —dp.

We conclude that the hull of invasion percolation with
trapping has a fractal dimension dif < 1.82 =~ dip and
close to 7/4 = dp, the hull dimension of conventional
percolation.
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